
Python Programming
Part 2

Instructor: Vision Wang

Email: xinwang35314@gmail.com

• Data Structures

• Modules

• Errors and exceptions

• Classes

Part 2

Data Structures

• Data Structures allow you to organize your data in such a way that enables you to
store collections of data, relate them and perform operations on them accordingly.
• Python has implicit support for Data Structures which enable you to store and
access data. These structures are called List, Dictionary, Tuple and Set.

Built-in Data Structures

These Data Structures are built-in with Python which makes programming easier
and helps programmers use them to obtain solutions faster.

Lists

• Lists are used to store data of different data types in a sequential manner.
• Index – the addresses assigned to every element of the list.
• Positive indexing – starts from 1 and goes on until the last element.
• Negative indexing – starts from -1 enabling you to access elements from the
last to first.

>>> my_list = [1,2,3,"apple","banana",2.33]
>>> print(my_list[2])
3
>>> print(my_list[-2])
banana

Dictionary

• Dictionaries are used to store key-value pairs.

What is key-value pair (KVP)?
• A key-value pair (KVP) is a set of two linked data items.
• A key is a unique identifier for some item of data.
• A value is the data that is.
• Key-value pairs are frequently used in tables.

>>> my_dict =
{"firstName":"Bugs","lastName":"Bunny","location":
"Earth"}
>>> print(my_dict)
{'lastName': 'Bunny', 'firstName': 'Bugs', 'location':
'Earth'}

Creating a Dictionary

Changing the adding key, value pairs

Dictionary

>>> my_dict["location"] = "USA"
>>> print(my_dict)
{'lastName': 'Bunny', 'firstName':
'Bugs', 'location': 'USA'}
>>> my_dict["Phone"] = 1234567
>>> print(my_dict)
{'lastName': 'Bunny', 'firstName':
'Bugs', 'location': 'USA', 'Phone':
1234567}

Accessing Elements
• Using the keys only.
• Using the get() function

>>> print(my_dict['lastName'])
Bunny
>>> print(my_dict.get("lastName"))
Bunny

Deleting key, value pairs

• Delete the values using the pop()
function.
• Clear the entire dictionary using
clear() function.

>>> a = my_dict.pop("Phone")
>>> print(a)
1234567
>>> print(my_dict)
{'lastName': 'Bunny', 'firstName':
'Bugs', 'location': 'USA'}
>>> my_dict.clear()
>>> print(my_dict)
{}

Dictionary

• Other functions: keys(), values(), items()

>>> my_dict =
{"firstName":"Bugs","lastName":"Bunny","location":"Earth"}
>>> print(my_dict.keys())
dict_keys(['lastName', 'firstName', 'location'])
>>> print(my_dict.values())
dict_values(['Bunny', 'Bugs', 'Earth'])
>>> print(my_dict.items())
dict_items([('lastName', 'Bunny'), ('firstName', 'Bugs'), ('location', 'Earth')])

Tuple

• Tuples are the same as lists with the exception that the data once
entered into the tuple cannot be changed no matter what.
• The only exception is when the data inside the tuple is mutable, only
then the tuple data can be changed.

>>> mylist = ["apple","banana","pear"]
>>> mylist[0] = "bird"
>>> print(mylist)
['bird', 'banana', 'pear']
>>> mytuple = ("apple","banana","pear")
>>> mytuple[0] = "bird"
Traceback (most recent call last):

File "<pyshell#29>", line 1, in <module>
mytuple[0] = "bird"

TypeError: 'tuple' object does not support item assignment

Tuple

Creating a Tuple

>>> mytuple = ("apple","banana",2)
>>> print(mytuple)
('apple', 'banana', 2)

Accessing Elements

>>> print(mytuple[0])
apple
>>> print(mytuple[0][1])
p

Appending Elements

>>> mytuple = mytuple + (2 , 3,
"sky")
>>> print(mytuple)
('apple', 'banana', 2, 2, 3, 'sky')

Q: Think about what result you can
print out according to the code
below?

>>>my_tuple = (1, 2, 3, ['hindi',
'python'])
>>>my_tuple[3][0] = 'english'
>>>print(my_tuple)
>>>print(my_tuple.count(2))
>>>print(my_tuple.index(['english'
, 'python']))

Set

• Sets are a collection of unordered elements that are unique.

Creating a set

>>>my_set = {1, 2, 3, 4, 5, 5, 5}
>>>print(my_set)
{1, 2, 3, 4, 5}

Adding Elements
• Use add() function.

>>>my_set = {1, 2, 3}
>>>my_set.add(4)
>>>print(my_set)
{1, 2, 3, 4}

Operations in sets
• union() function – combines the
data in both sets.
• intersection() function – finds the
data present in both sets only.
• difference() function – deletes
the data present in both and
outputs data present only in the set
passed.
• symmetric_difference() function
– same as the difference() function
but return the remaining in both
sets.

Set

Q: What’s the return for the code below? Think about it and try to
see if it’s same as what you think.

>>>my_set = {1, 2, 3, 4}
>>>my_set_2 = {3, 4, 5, 6}
>>>print(my_set.union(my_set_2))
>>>print(my_set.intersection(my_set_2))
>>>print(my_set.difference(my_set_2))
>>>print(my_set.symmetric_difference(my_set_2))
>>>my_set.clear()
>>>print(my_set)

Modules

• A module is a Python object with arbitrarily named attributes that you
can bind and reference.
• A module allows you to logically organize your Python code.
• Grouping related code into a module makes the code easier to understand
and use.
• A module can define functions, classes and variables.

An example of a simple module. This module file is named aname.py .

def print_func(par):
print("Hello : ", par)
return

print(print_func())

Import Statement
You can use any Python source file as a module by executing an import
statement in some other Python source file. The import syntax:

import module_name

from…import Statement
from statement lets you import specific attributes from a module into
the current namespace. The syntax:

from module_name import name1

from…import * Statement

Import all names from a module into the current namespace by using
the following syntax:

from module_name import *

Q: Could you create a module for Fibonacci numbers?

• The function the module can fulfill is to return all the
Fibonacci numbers less than or equal to a certain number,
which is an input number.

Errors and Exceptions

There are two distinguishable kinds of errors: syntax errors and exceptions.

Syntax Errors Exceptions
• Even if a statement or expression is
syntactically correct, it may cause an
error when an attempt is made to
execute it.

Classes

• Class − A user-defined prototype for an object that defines a set of attributes
that characterize any object of the class. The attributes are data members
(class variables and instance variables) and methods, accessed via dot
notation.

Creating classes

The class statement creates a new class definition. The name of the class
immediately follows the keyword class followed by a colon as follows

• The class has a documentation string, which can be accessed
via ClassName.__doc__.
• The class_suite consists of all the component statements defining class
members, data attributes and functions.

Class Example

Try and see, what will be printed out as result?

Classes

Creating Instance Objects
• To create instances of a class, you call the class using class name and pass in
whatever arguments its __init__ method accepts.

#This would create first object of Employee class emp1 =
Employee("Zara", 2000)
#This would create second object of Employee class
emp2 = Employee("Manni", 5000)

Accessing Attributes
• Access the object’s attributes using the dot operator with object.

>>>emp1.displayEmployee()
>>>emp2.displayEmployee()
>>>print("Total Employee %d" % Employee.empCount)

